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ABSTRACT 

The use of AO in Extremely Large Telescopes, used to improve performances in smaller telescopes, becomes now 

mandatory to achieve diffraction limited images according to the large apertures. On the other hand, the new dimensions 

push the specifications of the AO systems to new frontiers where the order of magnitude in terms of computation power, 

time response and the required numbers of actuators impose new challenges to the technology. In some aspects 

implementation methods used in the past result no longer applicable. This paper examines the real dimension of the 

problem imposed by ELTs and shows the results obtained in the laboratory for a real modal wavefront recovery 

algorithm (Hudgin) implemented in FPGAs. Some approximations are studied and the performances in terms of 

configuration parameters are compared. Also a preferred configuration will be justified.   
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1. INTRODUCTION 

Changes in the diffraction index of the media, due to variations in parameters affecting the atmosphere, produce wave 

front distortions. These aberrations affect the spatial resolution of the objects and disperse the photons in a bigger area on 

the detector making it less effective in the detection of faint object. Today, and next generation telescope developments, 

claim for the detection of faint objects while obtaining the best spatial resolution possible. If with a 10 m telescope, 

located in an observatory with optimum observing conditions, a 0.4 arcsec structure can be resolved, when this resolution 

is improved down to 0.04 arcsec, the resulting system performance is similar to what could be obtained in a 100 m 

telescope under the same atmospheric conditions with no wavefront correction. This gives an idea of the limitations 

introduced by the atmosphere and the importance of AO systems in the next generation of telescopes where diameters 

from 30 to 100 meters are the goal. 

2. AO FOR ELTS 

Today most observatories provide AO facilities to allow a better spatial resolution as an additional feature. For next 

generation of telescopes the huge diameters make it mandatory. The lost in spatial resolution, which apparently results in 

an effective reduction of the total size of the telescope, is unacceptable as every portion of the collecting area has to be 

effective for scientific and economic reasons. From now on the existence of AO system is a need of the telescope and all 

ongoing projects consider the development of this as part of the activities to be carried out to provide a successful 

facility. 

The size of these new infrastructures poses additional requirements to the AO systems. There is a scale factor problem, 

now a larger area of the waveform has to be sampled and better sampling resolution is required, but also an increase in 

the system overall performance that results in faster response is mandatory. To adapt the existing hardware to achieve the 

new requirements is not straightforward. The increase in calculation power is not obviously achieved by multiplying the 

existing HW. Extrapolating the total volume and power consumption of existing systems this turns to be a real limitation 

that prompts for new solutions. High performance, compact in size, reliability and low power consumption are 

parameters that guide the design of the new generation of AO systems. 



 

 
 

 

3. AO SYSTEM FUNCTIONAL DESCRIPTION 

The objective of an AO system that we consider here is the correction of the wavefront that reaches the telescope with 

aberrations due to distortions introduced by the atmosphere along the light path. The AO system requires three functions: 

To detect the wavefront, determine what waveform should have reached the telescope in absence of a distorting media 

such as the atmosphere, and generate all the required steps to produce a correction to compensate for the aberrations. 

This divides the AO system in three main subsystems: 

• The waveform sensor: Detects the light entering the telescope 

• The waveform detection: Using the information obtained from the waveform sensor determines the local 

variations of the waveform 

• The waveform recovery algorithm: Using the information provided by the local variations of the incoming 

waveform recovers the information of the waveform that should have reached the telescope in absence of 

distortion 

• The calculation of the actuations required by the compensating component: Once the waveform information is 

known then the compensation parameters that need to be applied to the compensator are derived. 

• An active component: Usually a deformable mirror that may adapt to the required shape to compensate from the 

aberration. 

 

 

Fig. 1. AO System diagram 

 

There is a time response required for the system. It is considered that the time variation of the atmosphere, for visible 

wavelengths, is in the order of 10 ms. If we want the system to be effective then the overall time response has to be less 

than this. It implies that the total time from the moment when the photons reach the detector of the wavefront sensor till 

the moment when the compensating mirror is in place has to be less that 10 ms. But a faster response is better as the 

atmosphere aberrations are not produced in steps but in the continuous. 

In this paper an algorithm to recover the waveform, its implementation on hardware and final performances are 

described. Also, indications of key factors that would help to improve time latency for a complete AO system are 

mentioned.    
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4. AO SYSTEM HARDWARE 

4.1 Shack-Hartmann sensor 

4.1.1 Sensor description 

A Shark-Harmann sensor is a well known waveform sensor that uses an array of microlenses in front of a detector to 

project subapertures of the waveform on it. The image of every single subaperture follow into a section of the detector 

and, in the case of absence of distortion, a single light point would be projected into the corresponding section of the 

detector. The effect of the aberration results in a displacement of such projection producing dx-dy displacements values 

for each subaperture. 

 

Fig. 2. Shack-Harmann sensor architecture. 

 
The number of microlenses that compose the array determines the spatial sampling of the waveform. Every subaperture 

is projected into a section of the detector where the displacement has to be computed. The number of pixels 

corresponding to a subaperture determines the accuracy in resolving the displacement of the subaperture projection dx-

dy. 

 

 

Fig. 3. Projection of subapertures onto the detector for a Shack-Hartmann sensor. 



 

 
 

 

4.1.2 Estimation of the number of subapertures 

For Extremely Large Telescopes (ELTs), with collecting apertures from 30 to 100 meters, the size of the focal plane is 

bigger than for present telescopes. Even if the spatial sampling resolution is to be maintained, the total number of 

subapertures will increase with a power of two factor. It is thus advisable to assume that the number of apertures required 

to obtain a reasonable spatial sampling is in the order of 32 * 32, which means that a 32 * 32 or larger microlenses array 

will be used. 

4.1.3 Resolution. Number of pixels per subaperture 

Also, to allow a better resolution in the gradient of the waveform in a certain subaperture, as a result of the atmospheric 

distortion and indicated by the displacement of the projection of every projection on the detector, the number of pixels 

per subaperture should be increased. To be on a safe side a number of 32 * 32 pixels per subaperture is considered.  

4.2 DX-DY matrix calculation  

After the detection of photons using the Shack-Hartmann sensor, the gradient of the waveform for each subaperture 

needs to be computed. Two matrixes DX and DY, with the dx and dy values corresponding to the deviations of the 

centroid from the nominal position for every subaperture, are obtained. 

Different methods have been used: 

4.2.1 Centroiding or Gravity method 

This method uses the well known gravity or weight method where every pixel contributes with a factor corresponding to 

the total signal received multiplied by a factor representing the distance in x or y to the nominal position in the non 

distorted waveform. 

4.2.2 Image Correlation 

Also image correlation techniques are applied to each subaperture to compare consecutive images and to determine the 

DX and DY matrixes. 

4.3 Waveform Recovery 

Once the information of the local variations, gradients, of the waveform for every subaperture is known, then the next 

step is to obtain the value of the waveform starting from the information contained in the DX and DY matrixes. This 

method is the objective of this work and will be detailed. 

4.4 Transformations and Deformable Mirror actuation 

Once the waveform received is known, then the correction that needs to be applied to obtain a non distorted waveform 

has to be calculated and the physical signals to be applied to the correcting element, normally a deformable mirror, 

generated. This is the last process in the sequence that has to be repeated with a time response fast enough to produce the 

correction before the distortion of the incoming waveform changes significantly. 

5. THE HUDGIN METHOD 

5.1 Theory 

Hudgin provides an iterative mathematical method that allows the reconstruction of a bidimensional function from the 

information contained in the local variations in both directions. The algorithm is represented for the following formula: 

 

Fig. 4. Hudgin algorithm 

M represents the algorithm iteration index, Ф1, Ф2, Ф3 and Ф4 represent the phase values of neighboring subapertures, 

in this case calculated in the previous iteration, and ∆Ф1, ∆Ф2, ∆Ф3 and ∆Ф4 the gradients. 



 

 
 

 

The Hudgin method, as is based on local variations of the function, does not allow the recovery of the continuum value 

of the function. This is not necessary for our purpose as our need is to correct for the distortions. 

 

Fig. 5. Phase and Gradients definition in a Shack-Hartmann sensor for the Hudgin method. u,d,r,l stand for up, down, 

right and left, j and k represent the file-column in the phase matrix and N represents the neighbor whose phase is at 

position jk in the phase matrix. 

 

5.2 Numerical simulations 

Some numerical simulations have been performed to understand the capabilities of this method and the feasibility to 

implement it in FPGAs where the floating point arithmetic is not efficient. 

5.3 Accuracy vs number of iterations 

The accuracy of the final result depends on the number of iterations performed. This directly affects the time required to 

obtain a result that matches, with reasonable error, to the actual waveform reaching the sensor. The actual number of 

iteration cycles may depend on the characteristics of the waveform function. It has been found that, with little difference, 

for Gaussian and Kolmogorov like waveforms iterations in the order of 500 give results with error results below 10
-3
 

being the error in the order of 10
-2
 for about 200 iterations. More than 500 iterations will not produce significant error 

reduction and thus this figure can be considered as the required number of iterations for a complete recovery of the 

incoming waveform. 

5.4 Singularities in the borders of the aperture 

There is also a practical problem that has to be faced when applying the method to a limited area. Hudgin applies to 

infinite surfaces, and this is the case of light, but as our aperture is limited we have to work with limited waveforms to a 

certain area. We have to face the contour problems and the fact that there are missing neighbors in the borders of the 

aperture. It has been assumed that the missing subapertures required to complete the algorithm for the contour have the 

same value as the value of the aperture of interest. It has proven to be a convenient assumption as the numerical 

simulations provided good results 

5.5 Numerical simulations 

5.5.1 Simulations for a known function 

For the shake of simplicity, to easy in comparing results, a Gaussian type signal was used to validate the inspection 

method consisting of:  

• Generation of a Gaussian waveform 



 

 
 

 

• Sample it into subapertures, and the values of the gradients dx and dy for each subaperture is calculated. At this 

point we had the DX and DY matrixes and the initial function that would provide such gradients. dx and dy values of 

missing subapertures in the contour are assumed to have the same value as the aperture of interest. 

• Run the Hudgin method and analyze results comparing the output waveform with the initial Gaussian waveform 

in terms of the number of iterations. 

  
 

Fig. 1. From Top left to bottom right. Gaussian waveform, DX-DY matrices and comparison of original and recovered 

function with error for non border correction (middle) and with border correction (bottom) 

 

5.5.2 Atmospheric like distorted waveforms 

The actual application will deal with atmospheric like distorted waveforms. As to validate the method it is required to 

know the initial waveform to compare it with the result obtained after running the method then it is necessary to 

synthesize atmospheric like waveforms. Assuming that Kolmogorov statistics represents a valid model we used 

waveforms using this statistics, ran the Hudgin method and proceeded as with the Gaussian waveform. The result was 

that the method works well for this type of waveforms. 

 

 

 
 

Fig. 2. Same as previous Fig but using a waveform complaint with the Kolmogorov statistics. 



 

 
 

 

 

5.6 Algorithm implementation in FPGAs. Feasibility. 

5.6.1 Fix ponint vs floating point arithmetic. 

Once the validity of the algorithm to recover waveforms as those likely to be produced by the atmosphere has been 

proved, the next step is to provide a physical implementation of the algorithm into a HW able to perform the required 

calculations in the time frame imposed by the application. As mentioned before, the total time available to correct from 

waveform distortion, from the image acquisition till compensation, has to be less than 10 ms. It is then advisable to make 

this computation, and all the computations and actions required to compensate the aberrations, in the minimum time 

possible. This work pretends to produce dedicated HW to make this calculations at the fastest speed possible. The 

circuits will be implemented in FPGA. 

The HW inside the FPGA is rather efficient if calculations are made in fixed point arithmetic. First it has to be 

demonstrated that the results, obtained with this arithmetic follows the results in the previous simulations with floating 

point arithmetic. A couple of assumptions have been made to provide relevant results: 

• Number of subapertures: We assume that the maximum number of subapertures is 256 * 256. This parameter 

determines the maximum spatial information of the waveform. The spatial resolution. 

• Number of pixels per subaperture: We assume that the maximum number of pixels corresponding to the area of 

the detector associated to each subaperture is 256 * 256. This determines the maximum resolution in the 

calculations of the dx and dy values. 

We then require 16 bits where 8 bits determine the subaperture while the other 8 bits indicate the position of the centroid, 

dx or dy, within a particular subaperture. 

These numbers are defined in excess and will give a worse case in terms of performance as the calculations will be more 

than those required by a real system. 

 
Fig. 3. Differences between Floating point and fixed point arithmetic simulations. 

 

The results obtained using Fixed and Floating point arithmetic have been compared and the error found is in the order of 

10-3. This is in the order of magnitude of the error in the waveform recovered for floating point arithmetic and thus it 

can be concluded that the use of fixed point arithmetic will not pose any significant error. The HW implementation on 

FPGA of the circuits to perform the Hudgin algorithm is therefore feasible. 



 

 
 

 

5.6.2 Design architecture 

The circuit architecture has been design to facilitate parallelism. To calculate the new phase matrix there will be as many 

circuits as files of subapertures operating in parallel. All the phases of a particular column of subapertures is calculated in 

parallel 

5.6.3 Memory 

The values corresponding to the initial differences dx and dy will be supplied in practice by a previous circuit that, using 

the centroiding, correlation or any other method will calculate them. As this is out of the scope of our circuit, these initial 

values are considered as available and stored in memory to be supplied to our circuit. There will be another memory, the 

phase memory, that is initially blank and will be updated with the phase recovered as a result of our algorithm. This 

memory is updated each iteration. 

 

 
Fig. 4. Memory architecture with DX-DY and Phase values. 

 

5.6.4 State Machine 

The process flow is controlled using a state machine that performs the same operations in every iteration cycle. The steps 

followed for every calculation consist of: 

• Read the dx, dy and phase values: Required for the calculations of a particular subaperture. As the state machine is 

based on a column index step, a line phase calculator requires 1 phase value, 2 dx and 2 dy values. This means that 

the values of 3 consecutive columns are required to obtain the phase corresponding to the aperture under 

consideration. The result of the first column of phases is calculated after the data from the 2 first columns, plus the 

assumed values for column -1, are available. 

• Operate the results: Once the dx, dy and phase values are available then the operations can be performed. There are 

a couple of singularities: 

o The subapertures in the borders do not have neighbours and the missing values for the phase are considered 

to have the same value as the phase to of the point under consideration during the previous iteration 

o There is no chance to make any operation till the values of the 2 first columns are received. Once the first 2 

columns are read then the phase of the first ‘singular column’ is calculated assuming that there is a column 

0 whose phase values equals the phase values of column 1. 

o Once this singular section has been covered then a new column of phases will be updated for every new 

column of subapertures that is read. 



 

 
 

 

• To update the phase matrix: Once the new value of the phase has been calculated, before reading a new column of 

phases, the new values of the column are updated in the phase memory. 

5.6.4.1 Regular and Singular apertures 

It has been considered, for the sake of simplicity, that the aperture is a square. This implies that the apertures in the first 

and last columns, as those in the first and last rows of apertures are particular cases where their missing neighbors are 

substituted with the same phase value of the pixel under consideration. A distinction has been made in the algorithm to 

operate correctly in both cases named regular and singular apertures. It is to notice that there will be always singular 

subapertures defining the contour of the total aperture of the system. 

5.6.5 Resources 

The circuit has been described using VHDL as the behavioral description and planned for implementation on an FPGA. 

No assumptions of a particular FPGA architecture or custom resources have been taken into account and thus further 

optimization is possible by customizing the components according to the particular FPGA resources. 

To provide the results and make an estimation of the benefits given by this hardware approach the circuit has been 

implemented into a VIRTEX 5 FPGA from Xilinx. It is considered for 32 * 32 subapertures and uses 16 bit resolution. 

 

 

Fig. 5. FPGA resources in use. 

This information includes also the memory block required to store DX and DY not necessary in a final implementation. 

5.7 Accuracy results 

The testing system was designed to allow introducing the same DX, DY matrixes as used in the mathematical 

computations. The phase matrix was recovered and stored in a file after the simulation of a circuit run. This resulting 

matrix was compared to the results obtained numerically. The same result was obtained from both methods for equal 

number of iterations and different input waveforms. This validates the calculations performed by the circuit inside the 

FPGA. 

5.8 Time performance 

A key parameter, that indicated the need of a HW implementation was the time required to run the algorithm. The system 

post place and route simulations were done and the results gave the following figure. 

Virtex5 
xc5vlx30-3ff324 

Used Available % Used 

Flip Flops 4700 51840 9% 

LUTs 9357 51840 18% 

Block RAM 48 96 50% 

Slices 2787 12960 21% 

Memory (KB) 1710 34654 49% 

 



 

 
 

 

 
 

Fig. 6. Post Place and Route simulation results. 

 
The result, obtained implementing the circuit in this particular FPGA but with no optimization to accommodate the 

circuits to the particular FPGA resources, for: 

• with a 100 MHz master clock 

• A full run with 10 iterations 

• For 32 * 32 sub-apertures and 16 bit resolution 

is 45 µsec which means roughly 4,5 µsec per iteration. If the error of the waveform recovered by the algorithm is 

acceptable after 200 iterations, then 0,9 ms are required to obtain the initial waveform. 

This implementation makes it an ideal choice for AO systems such as those required by ELTs, where the number of 

phase sub-apertures 128*128 or even 256 *256 is considered. 

• The time performance of this circuit is not a limitation factor in the AO system 

• A proper reception sequence of the local variations of the wavefront allows processing in parallel while still 

receiving the remaining information.  

• To allow a convenient sequence of local variation information the corresponding circuit and Phase sensor 

architecture need to be considered from the design phase. 

5.9 Comparison with previous implementations 

The fastest implementation known for this algorithm is based on GNUs and the performance of this implementation on 

FPGAs is about 2 orders of magnitude faster. 

5.10  Optimization 

The optimization effort to improve time performance and resource consumption has been limited and there is still margin 

to improve the results but with the present results it can be concluded that using the proper HW architecture of the AO 

system components a noticeable improvement in time performance could be obtained. Some of these key factors are 

mentioned. 

5.10.1  Parallelism 

It is advisable to run the algorithms in parallel and apply the corrections to different sections of the waveform as soon as 

they are available. The waveform variations take place along time and the fastesr the correction the better the result. 



 

 
 

 

5.10.2  Detector Architecture 

Referring only to the detector needs in terms of speed there is nothing new in this aspect. It is relevant that the processing 

of the DX-DY matrices can only been calculated once all the pixels corresponding to the subaperture are available. This 

indicates that the ideal detector architecture would provide an output channel per aperture and all this channels, al least 

those channels corresponding to subapertures in the same column of subapertures, are read and delivered with no delay. 

As this may imply too many outputs, the configurations should be done in such a way that the pixels corresponding to a 

same column are read at the same time with no dead times. 

5.10.3  DX-DY HW Improvements 

If the Hudgin algorithm is to be used then the subsystem used to calculate the difference matrixes should deliver the DX 

and DY values column after column to facilitate the process as planned. Every new column will provide enough 

information to start running the algorithm to recover the phase of every aperture in the column. 

5.10.4  Waveform recovery 

Finally the Hudgin method would run as described in this paper but iterating not the full matrix of apertures at a time but 

every column of subapertures independently. This would produce a column of recovered phases after the iterations of 

such column of subapertures is finished. 

6. CONCLUSIONS 

• The time performance of this circuit is not a limitation factor in the AO system 

• A proper reception sequence of the local variations of the wavefront allows processing in parallel while still 

receiving the remaining information.  

• To allow a convenient sequence of local variation information the corresponding circuit and Phase sensor 

architecture need to be considered from the design phase. 
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