

2D-FFT implementation on FPGA for wavefront phase recovery from

the CAFADIS camera

J. M. Rodríguez-Ramos*, E. Magdaleno Castelló, C. Domínguez Conde, M. Rodríguez Valido, and

J.G. Marichal-Hernández

Dpto. Física Fundamental y Experimental, Electrónica y Sistemas;

 University of La Laguna, Avda. Francisco Sánchez s/n. 38203, Spain

ABSTRACT

The CAFADIS camera is a new sensor patented by Universidad de La Laguna (Canary Islands, Spain): international

patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can measure the wavefront phase and the

distance to the light source at the same time in a real time process. It uses specialized hardware: Graphical Processing

Units (GPUs) and Field Programmable Gates Arrays (FPGAs). These two kinds of electronic hardware present an

architecture capable of handling the sensor output stream in a massively parallel approach. Of course, FPGAs are faster

than GPUs, this is why it is worth it using FPGAs integer arithmetic instead of GPUs floating point arithmetic.

GPUs must not be forgotten, as we have shown in previous papers, they are efficient enough to resolve several problems

for AO in Extremely Large Telescopes (ELTs) in terms of time processing requirements; in addition, the GPUs show a

widening gap in computing speed relative to CPUs. They are much more powerful in order to implement AO simulation

than common software packages running on top of CPUs.

Our paper shows an FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera. This

is done in two steps: the estimation of the telescope pupil gradients from the telescope focus image, and then the very

novelty 2D-FFT over the FPGA. Time processing results are compared to our GPU implementation. In fact, what we are

doing is a comparison between the two different arithmetic mentioned above, then we are helping to answer about the

viability of the FPGAs for AO in the ELTs.

Keywords: Adaptive optics, wavefront phase recovery, FPGA, GPU real-time processing.

1. INTRODUCTION

Next generation of extremely large telescopes (50 up to 100 meter of diameter) will demand big technological advances

to maintain aligned the segments of the telescopes (phasing of segmented mirrors) and then to correct from atmospheric

aberrations. Adaptive optics includes several steps: detection, wavefront phase recovery, information transmission to the

actuators and mechanical movements of them. In order to help on this, a quicker wavefront phase reconstruction seems

to be really relevant, and new wavefront sensors designs must be explored. The CAFADIS camera presents a robust

optical design that can accomplish the Adaptive Optics objectives even for extended objects as reference (elongated

LGS and solar observations). The CAFADIS camera is an intermediate sensor between the Shack-Hartmann and the

pyramid sensors. It samples an image plane using a microlens array. The pupil phase gradients can be obtained from

there, and after that, the problem for phase recovery is the same as in the Shack-Hartman.

When using complex exponential polynomials, very fast modal algorithms can be implemented because the kernel of the

Fast Fourier Transform (FFT) is the same
[1,2]
. The modal algorithms produce more precise results than the zonal solution

and it is the estimation selected by Rodriguez-Ramos et al.
 [3]
 to accomplish the phase reconstruction.

Until recently, the problem of the design of an efficient phase recoverer has been implemented over a GPU platform with

satisfactory execution time results
[3]
. GPUs provide a great computation power in a low cost broadly used peripheral but

the results are not optimized due to the rigid architecture of these device. A FPGA prototype can accelerate the

calculation due to the architecture of this device. In this way, FPGA technology offer extremely high-performance signal

processing capability through parallelism based on slices and arithmetic circuits and high flexible interconnection

possibilities
[4]
. Moreover, FPGA technology is an alternative to custom ICs (integrated circuits) for implementing logic.

*jmramos@ull.es; phone +34 922 318 249; fax +34 922318228.

Custom integrated circuits (ASICS) are expensive to develop, while generating time-to-market delays because of the

prohibitive design time. Thanks to computer-aided design tools, FPGA circuits can be implemented in a short time
[5]
.

With a clear idea of the FPGA technology features, we propose a FPGA implementation of the phase recoverer.

In this work, our principal objective is to design and implement a good and fast enough wavefront phase reconstruction

algorithm over a Virtex-4 FPGA platform, paving the road to accomplish the ELT's number of actuators computational

requirements within a 6 ms limit. The wavefront phase recovery algorithm, using the CAFADIS camera, is done in two

steps: the estimation of the telescope pupil gradients from the telescope focus image, and then the very novelty 2D-FFT

over the FPGA.

The remainder of the paper is structured as follows. Section 2 outlines a descriptive approach of the mathematical

algorithms implemented. A description of the implemented system is discussed in section 3. In Section 4 we analyse the

results obtained for the wave-front phase recovery from our CAFADIS camera. Conclusions and future work are shown

in Section 5.

2. A DESCRIPTIVE APPROACH

A wave-front sensing scheme based on placing a subpupil array at the focal plane of the telescope with each subpupil

reimaging the aperture is analyzed by Clare and Lane
[6]
. This wave-front sensing arrangement is the dual of the Shack–

Hartmann sensor, with the wave front partitioned in the focal plane rather than in the aperture plane. This arrangement

can be viewed as the generalization of the pyramid sensor. In their paper, they propose that the partial derivatives of the

pupil wave-front aberration with respect to ξ and η coordinates for an MxN array of subpupil are given by two gradient
formulas which are the generalization of those derived by Ragazzoni for the pyramid wave-front sensor

[6]
:

xM

Mm

N

Nn

nm

M

Mm

N

Nn

nmv

S

I

Ind

=

−

=
∂

∂

∑ ∑

∑ ∑

−

−=

−

−=

−

−=

−

−=

1
2

2

1
2

2

,

1
2

2

1
2

2

,

),(

),()(
),(

ηξ

ηξδ

η

ηξφ ,
yM

Mm

N

Nn

nm

M

Mm

N

Nn

nmu

S

I

Imd

=

−

=
∂

∂

∑ ∑

∑ ∑

−

−=

−

−=

−

−=

−

−=

1
2

2

1
2

2

,

1
2

2

1
2

2

,

),(

),()(
),(

ηξ

ηξδ

ξ

ηξφ (1)

where d is the size of lenslets in the array,),(vu δδ is the displacement of the central subpupil from the origin in the u

and v directions and),(, ηξnmI is the aperture image formed from the (m,n)th subpupil in the focal plane given by:

2
2

,)],(exp[),(])(2exp[)sinc()](2exp[)(sinc),(ηξφηξδπηηδπξξηξ jPndjdmdjddI vunm ⊗−−= (2)

Therefore, the algorithm depends on subpupil position into image and every pixel into every subpupil. In order to

implement the phase recovery from an aperture image on a FPGA, it is necessary to get a high level of parallelism as far

as possible, using the FPGA features, and to speed up all calculus. Therefore, some operations can be made at the same

time to estimate the pupil gradients, as they are independents among themselves. The calculus of the denominators is the

same for both gradients, and it is independent of the numerators calculus, which are independents between themselves

too.

From these gradients estimation, the wavefront phase),(ηξφ can be recovered using an expansion over complex

exponential polynomials:

)(
1

),(),(
1

0,

1

0,

)(
2

pq

N

qp

N

qp

qp
N

i

pqpqpq aIFFTe
N

aZa∑ ∑
−

=

−

=

+

===
ηξ

π

ηξηξφ

The gradient is then written:

pq

qp

pq ZajiS ∑ ∇=
∂

∂
+

∂

∂
=∇=

,

),(),(
rrrrr

η

φ

ξ

φ
ηξφηξ

Making a least squares fit over the F function:

2

,1,
)](),([jiaSF pqpq Z

qp

Z

pq

N rrr

ηξηξ
ηξ ∂

∂

∂

∂

= ∑∑ +−=

where S
r
 are experimental data. The pqa coefficients of the complex exponential expansion in a modal Fourier

wavefront phase reconstructor can be written as:

{ } { }
22

),(),(

qp

SiqFFTSipFFT
a

yx

pq
+

+
=

ηξηξ
 (3)

And finally the phase can be recovered from the gradient data by transforming backward those coefficients:

][),(1

pqaFFT −=ηξφ (4)

So a filter composed by three Fourier transforms must be done to recover the phase. Because of the telescope annular

mask, the Fourier transform introduces big spatial frequencies that produce wrong recovered phases. This can be avoided

using a padding different from zero and coherent with the definition of gradient
[1,2]
 although the latter implies much more

time consuming operations. To accelerate the process, an exhaustive study of the FFT algorithm has been crucial and has

allowed to specifically adapt the FFT to the modal wavefront recovery pipeline and the FPGA architecture.

3. SYSTEM ARCHITECTURE IMPLEMENTATION

The global system implemented is depicted in figure 1. The FPGA implementation has three sub-modules. At the front of

the system the camera link module receives data from CAFADIS in a serial mode. The following stages perform the

digital data processing using the FPGA resources. So, the implemented mathematical algorithm could be divided in two

stages: the estimation of the phase gradients from the camera-link data and the calculation of the wavefront phase.

Fig. 1. Complete system.

3.1 Module for estimation of the telescope pupil gradients

In previous section, mathematical resources were shown to obtain the estimation of the telescope pupil gradients.

This section exposes the implementation on FPGA of the equation (1). First of all, it is necessary to detail some

features of the full design. Pixels of CAFADIS image are received using the camera link standard, that is, the first

module receives serial data with a frequency fixed by the camera. The natural order of pixels reception is by rows,

that means, the system must be ready to use and store them in the correct way. A block diagram of this module is

depicted in figure 2.

CAFADIS CAMERA

LINK

ESTIMATION
GRADIENTS

MODULE

PHASE

RECOVERER

FPGA

PHASE

RECOVERED

Fig. 2. Conceptual design of the calibration module.

In order to tidy received data, we use a mask. This mask has the structure shown in table 1. Bit number 0 reports that

there is a data valid and enables the module. The function of bit number 1 is to indicate there is an N subpupil

increment. Finally, bit number 2 allows an M subpupil change.

Bit 2 Bit 1 Bit 0

m increment n increment Data valid
Table 1: Mask structure.

The mask is stored in a ROM memory and the address to this memory is generated with a counter. The increment of

counter takes place when a rising edge from camera clock happens. It is created like a VHDL module using

MATLAB to generate the VHDL file.

The blocks named “n index” and “m index” (figure 2) generate the relative place of the subpupil into image. Those

values are computed using a counter and there is a count increment when mask bit 1 (in case of n) or mask bit 2 (in

case of m) is asserted. The counts of counters have as range]
2

,1
2

[NN +− in case of index n and]
2

,1
2

[MM +− in case of

index m.

The algorithm block depicted in figure 2 is the core of this module. It carries out tasks necessary to work out all

correct results. As shown figure 3, the architecture implemented to this block is a pipeline
[7]
, so every rising edge of

pixel clock there is a displacement of data from one stage to next stage and this happens for all stages at the same

time. The stages of this architecture are interconnected with a register that holds data stable until next rising edge of

clock. There are some signals which are propagated through all stages, the mask and divisor enable. Divisor enable

is asserted only when a pixel belongs to last subpupil of the received image.

The main task of this block is to calculate three summatories, whose calculated values are stored in a memory cell.

The addresses to store the partial results are obtained with a counter. The counter allows the correct subpupil change

in order to obtain the correct partial summatory and store it in the right memory position to tidy results when

necessary (see in figure 2 the RAM address generator).

There are two parallel tasks at first stage, one memory access to recover the appropriate partial summatory from

RAM memory and the computation of 




 −=),(

,
)(ηξδ

nm
I

v
nd

n
W and 





 −=)(,η,

m,n
)I

u
δ(md

m
W . Each RAM

memory is implemented with dual port memory core from Xilinx
[8]
. It allows to read and write the memory

simultaneously. The reading is done in the first stage and the writing is done at third stage. The data at first stage

which pass to next stage are: partial sums read from memories,
n

W ,
m

W and),(
,

ηξ
nm

I .

At the second pipeline stage, the system makes three parallel sums, between the partial summatories read from

memories and new pixel data, in case of denominator, or the calculated weights in other case. Third pipeline stage

Algorithm
ξ

ηξφ

∂

∂),(

η

ηξφ

∂

∂),(

Pixel

Pixel clock

Mask

address

generator n Index

m Index

RAM
address

generator

Mask

ROM

Gradient estimation module

consists in three multiplexers to initialize the adequate memory cell and to perform division in case divisor enable is

asserted. Otherwise, results of previous stage are written in memory.

Fig. 3. Block diagram of Pipeline. (*) Memories in first stage are the same than memories in third stage.

The last stage implements the division by restoration algorithm (figure 4). The system needs to work with highest

possible system clock frequency. In order to get it, at last stage the divisor groups in eight stages and computes the

results of division. Each stage provides to the next stage the rest and two bits of every quotient (Q).

Fig. 4. Division algorithm.

3.2 The phase recoverer

From the gradient estimations we have to obtain the phase data (figure 1) and equations 3 and 4. In order to implement

the phase recover block, we could choose a sequential architecture with a unique 2D-FFT module where data values use

three times this module in order to calculate the phase. This architecture represents an example of an implementation

using minimal resources of the FPGA. However, we search a fast implementation of the equations in order to not exceed

the 6 ms limit of the atmosphere turbulence, so we have chosen a parallel architecture to implement the algorithm.

Although the resources of the device increase considerably, we insure to keep the temporal restriction using extremely

010
 00

 010

001000
010

Negative: Q(3)=’0’, Rest = “01”

Rest=

010
Positive: Q(2)=’1’, Rest = “00”

Rest= 000
010
 000 Rest=

Rest=

Negative: Q(1)=’0’, Rest = “00”

Negative: Q(0)=’0’, Rest = “00”

RAM
denominator

(*)

RAM
Numerator N

(*)

Mask

Index n

Camera
input

Index m

En_div

Denominator

sum

P
í
x
e
l

M
a
s
k

n

m

Numerator

sum M

D
e
n
M

W
M

RAM
Denominator

(*)

RAM
Numerator M

(*)

RAM
Numerator N

(*)

RAM
Numerator M

(*)

ξη
δ Iumd)(−

M
a
s
k

N
u
m
n
M

N
u
m
m
M

ξηδ Ivnd)(−

W
N

M
a
s
k

M
u
x

M
u
x

M
u
x

D
e
n
o
m

D
e
n
M

M
a
s
k

N
u
m
e
r
N

N
u
m
e
r
M

N
u
m
e
r
N

N
u
m
e
r
M

∑∑

∑∑ −

m n

I

m n

I
u

md

ξη

ξηδ)(

∑∑

∑∑ −

m n

I

m n

I
v

nd

ξη

ξηδ)(

M
a
s
k

q
u
o
N

R
e
s
t
N

Q
o
o
M

R
e
s
t
M

Numerator
sum N

P
i
x
e
l

high-performance signal processing capability through parallelism. With this consideration in mind, we synthesize three

2D-FFT instead only one.

The block diagram of the implemented architecture is depicted in figure 5. For this implementation, we select a 16 bits

input data precision for Sx and Sy values. Sx and Sy are 8x8 elements arrays. These pixels represent the image

displacement into each subpupil.

Fig. 5. Block diagram of the synthesized phase recoverer. The module was implemented on a XC4VSX35 Virtex-4 device.

Clock, reset and chip enable (ce) signals have been omitted in order to simplify the diagram.

Taking into account the analysis of the equations and a parallel architecture for its implementation, we have broken

down the design in the following steps or stages:

1. Two real forward 2D FFT that compute FFT(Sx) and FFT(Sy).

2. The spatial filtering to compute the coefficients:

{ } { }
22

),(),(

qp

vuSiqFFTvuSipFFT

pq

yx

a
+

+=

3. A complex inverse 2D FFT on apq.

4. Flip data results.

The first step above is a direct use of the 2D FFT proposed. To accelerate the process, the two real transforms are

executed simultaneously through a parallel implementation. As we can notice, the two 2D-FFT of the Sx and Sy phase

gradients are multiplied by some constant factors according to the phase recovery formula. An adder is necessary in the

following stage to calculate the frequency coefficients and to achieve an inversed 2D-FFT. At last, the phase values are

transmuted, so we need an intermediate memory to show the output data properly.

We would like to emphasize that the xS and yS transforms are parallel executed. This allows to receive both inputs

simultaneously and to obtain the calculation of both data just like in the previous case at the output of the 2-D FFT units.

The modules of the synthesized prototype are described below. 2-D FFT blocks were implemented using structural

VHDL and the others modules were implemented using functional VHDL
[4]
. XST was used to synthesize these

modules
[5]
.

• 2D-FFT

In figure 6, the diagram of the implemented 2D transform module is depicted. The operation of the developed system is

as follow: image data is received in serial form by rows. These data are introduced in a block that carries out a one-

dimensional FFT. As this module obtains the transformed data, the information is stored in two double-port memories

(real and imaginary data). To complete the bidimensional FFT, the stored data are introduced in a second 1D-FFT in

column format. Finally, at this block output the 2D-FFT is obtained.

M
U
X

2
 a
 1

Fig. 6. Diagram of the implemented 2D-FFT

The FFT blocks were designed using a core that supplies Xilinx to implement one-dimension transforms
[9]
. Three

architecture options are available with this core: radix-2 (minimum resources), radix-4 (that have a load/unload phase

and a processing phase) and the pipeline architecture. All the options calculate the 1D-FFT using the Cooley and

Tukey
[10]
 algorithm. We have chosen the pipeline architecture because it is the only option that allows continuous data

processing even though it uses more logic resources. The user can stream in input data and, after the calculation latency,

can continuously unload the results. In this way, for the pipeline transform, the number of clock cycles to calculate the

transform is the number of points of the FFT.

The module supports scaling at every stage of the transform using a fixed-scaling schedule because of the values can

experience a certain intrinsic growth due to the butterfly calculations
[9]
. However, in this implementation we have

preferred to perform the calculations with no scaling and the unscaled full-precision method was used to avoid error

propagations. Using this option the overflow situations are avoid because the output data have more bits than the input

data. Taking this into account, the row FFT block and the column FFT block are not identical due to the data precision.

The values calculated by the row FFT block are stored continuously in a RAM memory (odd RAM, for example). In

fact, this block contains two double-port RAMs, the first one for the real part of the data and the other one for the

imaginary part. A counter is used to address the memory in write mode. The Xilinx FFT core supplies an index for data

output, named k_index. This index is extended adding additional bits in order to address all the elements of the image

matrix. This counter is enabled when the done signal of the row FFT is activated. This signal indicates when the

transformed data are available. The counter supplies the address for column data of the memory. To obtain these

addresses, we commute the most significant bits by the less significant ones.

It is not possible a continuous processing of the data using a single dual-port memory (real and imaginary). In that case,

the new transform data must wait until the old data stored in the memory were introduced in the second FFT block. In

other case, the data are overwritten. So, the pipeline property of the FFT architecture can not be used. This problem is

solved using two memories instead only one. The memories are continuously commuting between write and read modes.

When the odd memory is reading and introducing data values in the second FFT module, the even memory is writing

data to come from the first FFT. So, data flow is continuous during all the calculations of the bidimensional transform.

The modes of the memories are continuously alternating and the function is selected by the counter. The same signal is

used to commute the multiplexer that select the income data into the column transform unit.

Table 2 shows the resource utilization to implement a pipeline 2D-FFT when the input data precision is 8 bits. The larger

transform that we can synthesize is 128x128 points. Notice that the maximum frequency of operation is smaller when the

size of FFT increases.

2D-FFT

8 bits
Slices Slices Flip-Flops RAMB16 DSP48s Fmax

Clock

cycles

Duration

[@ 100 MHz]

8x8 1141 (7%) 1958 (6%) 4 (2%) 6 (3%) 305.599 162 1620 ns

16x16 1667 (10%) 2839 (9%) 4 (2%) 6 (3%) 304.404 412 4120 ns

32x32 2855 (18%) 4517 (14%) 4 (2%) 15 (7%) 292.757 1304 13.04 µs

64x64 4613 (30%) 6318 (20%) 16 (8%) 15 (7%) 189.519 4516 45.16 µs

128x128 8135 (52%) 9755 (31%) 64 (33%) 25 (13%) 161.300 17084 170.84 µs
Table 2. XC4VSX35 Virtex-4 Resource utilization using an input data precision of 8 bits.

The resource utilization is greater and the maximum frequency is smaller when the FFT has a 16 bits precision due to the

increase of the intrinsic complexity with this precision (table 3).

2D-FFT

16 bits
Slices Slices Flip-Flops RAMB16 DSP48s Fmax

Clock

cycles

Duration

[@ 100 MHz]

8x8 1650 (10%) 2809 (9%) 4 (2%) 10 (5%) 285.193 162 1620 ns

16x16 2302 (15%) 4076 (13%) 4 (2%) 10 (5%) 278.384 412 4120 ns

32x32 3992 (25%) 6315 (20%) 8 (4%) 22 (11%) 195.223 1304 13.04 µs

64x64 6472 (42%) 8870 (28%) 24 (12%) 22 (11%) 165.272 4516 45.16 µs

128x128 11326 (73%) 13522 (44%) 24 (12%) 36 (18%) 161.300 17084 170.84 µs
Table 3. XC4VSX35 Virtex-4 Resource utilization using an input data precision of 16 bits.

As we show in (1) and (2), it is necessary three 2D-FFTs to implement a pipeline wavefront phase reconstructor. So, it

only can recover the phase with a sensor up to 64x64 subpupils using 8 bits precision and up to 32x32 with 16 bits

precision. This size is enough at these moments for the prototype, but if we want to implement a greater recoverer, we

should select a FPGA with more resources or we should have to change the architecture of the design.

It can be seen that for the 128x128 2-D FFT, the implemented algorithm executes each operation in 170.84 µs, that

implies 5853 frame rate per second, which meets astronomical image processing frame rate requirements. This contrasts

with the analysis carried out by Uzun et al. for parallel 2-D FFT for different architectures using a Virtex-2000E
[11]
. The

faster 128x128 implementation has a performance of 420 fps. So, our architecture results an improvement in terms of

speed.

• The other components

The design has three 8x8 points 2-D FFTs using a precision of 16 bits for phase gradients. The three blocks in the figure

6 are identical and they have a generic value (fwd_inv) that determines if the module is an inversed or directed transform.

Direct transform are real, so the imaginary components are zero. The inversed transform allows complex input data.

The bidimensional transforms of Sx and Sy have to multiply by 22 qp

ip

+
and 22 qp

iq

+
 respectively according eq. (1). These

two 8x8 points matrix are identical if we change rows by columns. So, we can store a unique ROM (really two 64x16

bits ROM, a ROM for the real part of the factor and the other for the imaginary part).

The outputs at the two complex multipliers are added using an adder implemented using slices exclusively. This adder

sums real an imaginary parts.

The FLIP-RAM module synthesizes a double dual-port memory like the memories that were described in the

bidimensional transform section. This module is necessary because of the disordered phase data provided by the inverse

2D-FFT.

4. RESULTS

We have implemented a system to recover the wave-front phase from the CAFADIS camera. This system is organized in

two blocks. The first one estimates the phase gradients from pixels of the incoming camera image. The second achieves

the objective, the phase recovery. These blocks have been evaluated and synthesized in a XILINX XC4VSX35 Virtex-4.

This FPGA is provided in a ML402 XTREME DSP evaluation platform. The prototype has been designed using ISE

Foundation 8.2 and MODELSIM simulator.

The design was programmed using the VHDL hardware description language (except Xilinx 1-D FFT core). All system

was successfully tested in circuit using ChipScope Pro software. It inserts logic analyzer and bus analyzer directly into

the design, allowing to view any internal signal. Signals are captured at operating system speed and brought out through

the programming interface. Captured signals can then be analyzed with the PC that acts as a logic analyzer. Also, the

numeric results were successfully compared with the same obtained in Matlab.

Table 4 shows Virtex-4 resource utilization of the complete system. Most of the FPGA resources are consumed by the

phase recoverer unit because it has three 2D-FFT modules. The rest of the mathematical components of the design

(memories, adders, divisors) are simpler and they need less hardware logic.

Resource Used/Available Percentage

Slices 6218/15360 40%

Flip-flops 9681/30720 32%

Block RAM 21/192 11%

DSP48 38/192 21%
Table 4. Virtex-4 XC4VSX35 resource utilization to implement the complete system, taking in account an image size is

128x128 pixels and subpupil size is 8x8 in this implementation.

Module Cycles Duration (@ 100 MHz)

Gradient estimation 15480 154.80 µs

Phase recoverer 396 3.96 µs

Total 15876 158.76 µs
Table 5. Execution time for the first data valid

Table 5 shows the spent time in starting the results transmission. The number of clock cycles for gradient estimation

coincides to the cycles needed to generate the first output which is input to phase recoverer unit. The system can process

data in very lower times than the atmosphere response. This allows to introduce more phases in the adaptive optics

process. The Following subsections will explain certain special features of each module.

4.1 Analysis of the phase recoverer

Table 6 shows the total time broken down into the stages of the phase recoverer unit. 396 clock cycles are necessary to

recuperate the phase, from the receive data beginning to the activated ready signal. This value is the latency time for the

phase recoverer. At 100 MHz frequency clock, the system needs less than 4 µs to recover the phase.

Table 6 Execution time (latency) for the different stages of the phase recoverer

Module Cycles Duration (@ 100 MHz)

2D-FFT

(xS and yS)
162 1620 ns

Multipliers 4 40 ns

Adder 1 10 ns

IFFT2D 162 1620 ns

Flip-RAM 64 640 ns

Rounding (3) 3 30 ns

Total 396 3960 ns

The implemented architecture is pipeline. That implies we can obtain phase data every 64 clock cycles (this number

coincides with the number of point of the transforms, that is, the number of subpupils, 8x8). Using the 100 MHz clock,

the prototype provides new phase data each 640 ns. So, we obtain data values with a throughput of 1.56M frame per

second.

We have carried out a time estimation in order to consider the implementation of a phase recoverer for extremely large

telescopes where the Shack-Hartmann sensor will have more number of subpupils. Only 2D-FFT and flip-RAM modules

are affected by the size of the sensor in table 4. For 2D-FFT modules, the durations are given in tables 1 and 2. Clock

cycles for the RAM coincide with the number of subpupils. Table 7 shows a temporal estimation comparison between

several phase recoverers using FPGA and GPU (Graphical Processing Unit) calculated by Rodríguez-Ramos et al
[3]
. We

can observe that for a 256x256 subpupils, the latency is yet below of the 6ms atmospheric characteristic time. Notice that

the implementation based on FPGA results faster than the GPU solution. FPGA operation speed could be even faster if

we use a greater frequency clock. This way is possible in Virtex-4 and Virtex-5 families. So, FPGA evolution is an

important aspect to consider into an improved recoverer.

Size

(gradient data)
Cycles

Time in FPGA

[@ 100 MHz]

Time in GPU

[3]

8x8 396 3.96 µs

16x16 1088 10.88 µs

32x32 3640 36.40 µs

64x64 13136 131.4 µs 3.531 ms

128x128 50560 505.6 µs 3.875 ms

256x256 198664 1.987 ms 5.172 ms
Table 7 Execution times of the phase recoverer for different sizes of subpupils into the Virtex-4 XC4VSX35 and into the

GPU nVidia GeForce 7800 GTX with 256 MB RAM [3].

5. CONCLUSIONS AND FUTURE WORK

An FPGA phase recoverer implementation is presented. This is a solution for our CAFADIS camera, but it is also

solution for the Shack-Hartmann wavefront sensor: the pupil wavefront phase is obtained from there pupil gradients. The

designed phase recoverer carries out the calculations inside the atmospheric characteristic time using really high

sampling. Results for several input data precision are shown. A bidimensional FFT is implemented over an FPGA

architecture as nuclei algorithm of the recoverer: processing times are really short. We conclude that the FPGAs integer

arithmetic is not a drawback. Then, the viability of the FPGAs for AO in the ELTs is assured.

Even, the quantity of used resources devices could be reduced taking into account mathematical properties. In this way,

two direct 2D-FFT are executed in parallel form and they could share some hardware resources (index, counters…). So,

we could implement two ad-hoc FFT for this stage of the algorithm. Furthermore, as they are real transforms, we could

design a unique 2D-FFT to compute FFT[Sxy]=FFT[Sx+iSy] and then obtain FFT[Sx] and FFT[Sy] like:

2

][][*

][xyxy SFFTSFFT

xSFFT
+

=
i

SFFTSFFT

y

xyxySFFT
2

][][*

][
−

= .

Thus, we could save about 30% of the resources device.

We will soon implement a larger recoverer into a XC5VSX50T Virtex-5, that is faster and has more resources than the

XC4VSX35 Virtex-4. The main features of this device are 52224 slices, 32640 slices flip-flops, 288 DSP48s and 264

BRAM blocks
[13]
. This Virtex-5 can be operating up to 550 MHz and it has a lot of DSP48 circuits in comparison with

the Virtex-4 family. So, we can minimize slices utilization using more of these components. The prototypes could be

four times faster than with Virtex-4 FPGA device.

We will also implement an FPGA phase recoverer for the CAFADIS camera using very extended objects as reference.

ACKNOWLEDGMENTS

This work has been partially supported by “Programa Nacional de Diseño y Producción Industrial" (Project DPI 2006-

07906) of the “Ministerio de Ciencia y Tecnología" of the Spanish government, and by “European Regional

Development Fund" (ERDF).

REFERENCES

[1] L. A. Poyneer, D. T. Gavel, and J. M. Brase, “Fast wave-front reconstruction in large adaptive optics systems with

use of the Fourier transforms”, J. Opt. Soc. Am. A 19, pp. 2100-2111, 2002.
[2] F. Roddier and C. Roddier, “Wavefront reconstruction using iterative Fourier transforms”, Applied Optics 30, pp.

1325-1327, 1991.
[3] J. M. Rodríguez-Ramos, J. G. Marichal-Hernández, F. Rosa, “Modal Fourier wavefront reconstruction using

graphics processing units”, Journal of Electronic Imaging, vol. 16, issue 2, June 2007.
[4] IEEE Standard VHDL Language Reference Manual, IEEE-1076-2000, 2000. 11.
[5] Xilinx, “XST User Guide”, pp. 118-217, 2006.
[6] R. M. Clare and R. G. Lane, “Wave-front sensing from subdivision of the focal plane with a lenslet array”, J.

Opt.Soc. Am. A/Vol. 22, No. 1, pp. 117-125, 2005.
[7] D. A. Patterson and J. L. Hennesey, “Estructura y diseño de computadores”, Ed. Reverté, cap.6, pp.426-513, 2000.
[8] Xilinx “Dual-Port Block Memory core v6.3”, 2005.
[9] Xilinx, “Fast Fourier Transform v3.2”, 2006.
[10] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series", Mathematics

of Computation 19, pp. 297-301, April 1965.
[11] I. S. Uzun, A. Amira and A. Bouridane, “FPGA implementations of fast Fourier transforms for real-time signal and

image processing”, IEE Proc.- Vis. Image Signal Processing, vol. 152, no. 3, pp. 283-296, 2005.
[12] Xilinx, “XtremeDSP for Virtex-4 FPGAs user guide”, 2006.
[13] Xilinx, “Virtex-5 Family Overview. LX, LXT and SXT Platforms”, pp. 2-6, December 2007.

